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Fake news

“A type of yellow journalism or propaganda that consists of deliberate 
disinformation or hoaxes spread via traditional print and broadcast 
news media or online social media.” – Wikipedia

• Fabricated news that takes the appearance of real news

• Increasingly prevalent over the last few years

• Difficult to detect

Pavlos Fafalios, Stance Classification for Fact Checking, Web Science 2019 2



Fake 
News
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Fake news – Types (by Claire Wardle)

• fabricated content
• new content is 100% false, designed to deceive and do harm

• misleading content
• misuse of information to frame an issue completely differently

• false context
• when genuine content is shared with false contextual information

• impostor content
• Fake content that purports to come from a real news site

• manipulated content
• when genuine information or imagery is manipulated to deceive

• false connection
• when headlines, visuals or captions don't support the content

• satire or parody
• no intention to cause harm but has potential to fool
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Fake news – Influence of Social Media

• Twitter:
• False claims are retweeted faster, further, and for longer than true claims 

(Vosoughi et al. 2018)

• Facebook:
• The top-20 fake news stories about 2016 US Election received more engagement 

than the top-20 election stories from 19 major media outlets
https://abcnews.go.com/Technology/fake-news-stories-make-real-news-headlines/story

• 50 of the biggest fake stories of 2018 generated roughly 22 million total shares, 
reactions, and comments on Facebook
https://www.buzzfeednews.com/article/craigsilverman/facebook-fake-news-hits-2018
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Vosoughi, S., Deb R., and Sinan A. "The spread of true and false news online." Science 359, no. 6380 (2018): 1146-1151.
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Fact checking

• An assertion or statement (a “claim”) is examined to determine its veracity and 
correctness
• Ante hoc: before publication/dissemination (for publishing only checked material)
• Post hoc: after publication/dissemination (for checking the veracity of a published claim)

• Fact-checking organizations: from 44 in 2014 to almost 100 in 2016

• Popular “post hoc” fact-checking web sites:
• FactCheck.org - 4 Webby Awards in the Politics category
• PolitiFact - Pulitzer Prize for National Reporting in 2009
• Snopes - "well-regarded source for sorting out myths and rumors“

• High impact (Nyhan and Reifler 2015)

• corrective effect on misperceptions among citizens
• discourages politicians from spreading misinformation
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Nyhan, B., & Reifler, J. (2015). The effect of fact‐checking on elites: A field experiment on US state legislators. 
American Journal of Political Science, 59(3), 628-640.
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Fact checking - Example

https://www.snopes.com/fact-check/donald-trump-nyma-iq/
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Fact checking – Topics and Ratings
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Fact checking

• Challenging process:
• Laborious, demanding, time-consuming, costly

• 1 day to research and write a typical article about a single claim (Hassan et al. 2015)

• Difficult to keep up with the amount of misinformation and the spread speed
• Lack of resources for investigative journalism!

• Facilitating fact-checking
• Trying to (semi-)automate some of its stages:

• Detecting check-worthy claims 
• Matching check-worthy claims to fact-checked claims 
• Finding claim-relevant documents 
• Detecting the stance of a document towards a claim
• Inferring the veracity of a claim 
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Hassan, N., Adair, B., Hamilton, J. T., Li, C., Tremayne, M., Yang, J., & Yu, C. (2015, July). The quest to automate fact-
checking. In Proceedings of the 2015 Computation+ Journalism Symposium.
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Stance Detection
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• Detecting the perspective (stance) of a document towards a claim 
• It provides evidence to support true claims or invalidate false claims

(for facilitating a fact-checking process)
• It provides a means to identify potential misinformation 

(if the claim has already been fact-checked)

• Input: 
• The text of a claim 
• The text of a document

• Output:
• The stance of the document towards the claim

• UNRELATED
• DISCUSS (NEUTRAL)
• AGREE
• DISAGREE
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Stance Detection – Example

Graffiti Artist Banksy Arrested In London; Identity Revealed• Claim:
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Stance Detection – Example
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• Document:

Stance: AGREE

12Pavlos Fafalios, Stance Classification for Fact Checking, Web Science 2019



Stance Detection – Example
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• Document:

Stance: DISAGREE
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Stance Detection – Example
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• Document:

Stance: DISCUSS
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Stance Detection – Example
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• Document:

Stance: UNRELATED
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Stance Detection – Fake News Challenge (FNC) 

• Fake News Challenge (FNC) - http://www.fakenewschallenge.org/
• “The goal of the Fake News Challenge is to explore how artificial intelligence 

technologies, particularly machine learning and natural language processing, 
might be leveraged to combat the fake news problem”

• “A helpful first step towards identifying fake news is to understand what other 
news organizations are saying about the topic”

• FNC-I task: Stance Detection
• Estimating the stance of a body text from a news article (“document”) relative 

to a headline (“claim”)

• The body text may AGREE, DISAGREE, DISCUSS or be UNRELATED to the 
headline
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Stance Detection – Fake News Challenge (FNC) 

• Dataset
• Derived from the Emergent project (Ferreira and Vlachos 2016)

• 2,587 documents related to 300 claims (200 for training and 100 for testing)

• Each document has a summarized “headline” that reflects its stance 

• Thus, each claim is represented through different headlines of different stances!

• Example: 
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Ferreira, W., & Vlachos, A. (2016). Emergent: a novel data-set for stance classification. In Proceedings of the 2016 conference of the North 
American chapter of the association for computational linguistics: Human language technologies(pp. 1163-1168).C

Headline (claim):  “No, it's not Tiger Woods selling an island in Lake Mälaren”
Document: “The sale of a private island in Lake Mälaren has received international 

attention, thanks to the assertion that it is Tiger Woods who sells it. But 
that's not true - the true owner is a Swedish millionaire … … …”

Stance: AGREE



Stance Detection – Fake News Challenge (FNC) 

• Instances (claim-document pairs):
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• AGREE and DISAGREE: important classes in this “fake news” context
• Discovery of documents that can help invalidating false claims (e.g., by 

providing evidence)

• Discovery of sources that distribute fake news!

Highly unbalanced 
class distribution!



Stance Detection: Approaches
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Stance Detection: FNC-I baseline

• Gradient boosting classifier

• Features:
• N-grams match: number of common n-grams (sequence of n continuous words) 

in the headline and the document (2-, 3-, 4-, 5-, 6-grams) 

• N-chargrams match: Number of common n-chargrams (sequence of n 
continuous characters) in the headline and the document  (2-, 8-, 4-, 16-
chargrams)

• Binary co-occurrence: number of words of the claim that appear i) in the entire 
body of the document, ii) in the first 255 words of the document

• Lemma overlap: similar to unigram match, but the words are first lemmatized. 

• Refuting words: Appearance of refuting words in the headline
• List: 'fake', 'fraud', 'hoax', 'false', 'deny', 'denies', 'not', 'despite', 'nope', 'doubt', 'doubts', 

'bogus', 'debunk', 'pranks', 'retract‘

• Headline polarity: number of refuting words in headline % 2

• Document polarity: number of refuting words in the document % 2
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Stance Detection: Solat in the SWEN

• The top-ranked system of FNC-I
• Combination (weighted average) between gradient boosting and a deep 

convolutional neural network 
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https://github.com/Cisco-Talos/fnc-1/ 
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• Gradient boosted decision trees 

• Features:
• Basic Count Features

• TF-IDF Features 

• SVD Features
• For finding the latent topics

• Word2Vec Features
• Using pre-trained word vectors

• Sentiment Features
• Sentiment polarity score of headline 

and document

• Using NLTK (https://www.nltk.org/)

Stance Detection: Solat in the SWEN
https://github.com/Cisco-Talos/fnc-1/ 

https://www.nltk.org/
https://github.com/Cisco-Talos/fnc-1/
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• Deep convolutional neural network

• Networks:
• 1D CNN on the headline and body text 

using pre-trained word2vec

• MLP with 4-class output

Vector 

embedding

Convolution

Dense

Output

Stance Detection: Solat in the SWEN
https://github.com/Cisco-Talos/fnc-1/ 
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Stance Detection: Athene (UKP Lab)

• The 2nd ranked system of FNC-I

• MLP with 6 hidden and a softmax layer

• Features:
• Unigrams

• Cosine similarity of word embeddings of nouns 
and verbs between headline and document

• Topic models based on non-negative matrix 
factorization (NNMF), latent dirichlet allocation 
(LDA), and latent semantic indexing (LSI)

• + the FNC-I baseline features
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https://github.com/hanselowski/athene_system
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Stance Detection: UCL Machine Reading

• The 3rd ranked system of FNC-I

• Simple MLP network with 1 hidden layer 

• Features:
• TF vectors of unigrams of 

the 5,000 most frequent words

• Cosine similarity of the TF-IDF vectors 
of the claim and document
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Stance Detection: CombNSE

• Deep MLP model combining neural, statistical and external features
• Neural features

• Skip-thought vectors which encode sentences to vector embedding 

• Statistical features 
• 1-gram TF vector of the headline, 1-gram TF vector of the body

• External features
• n-grams (n = 2, …, 6), n-chargrams (n = 2, …, 16), TF-IDF
• Sentiment difference between the headline-body pair (using a lexicon based approach)
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Bhatt, G., Sharma, A., Sharma, S., Nagpal, A., Raman, B., & Mittal, A. (2018). Combining Neural, Statistical 
and External Features for Fake News Stance Identification. In Companion of the The Web Conference 2018.



• Stacked LSTM network (RNN) combined with a set of hand-crafted features
• Using 50-dimensional GloVe word embeddings (Pennington et al. 2014) for generating sequences of 

word vectors of a headline-document pair 
• For better capturing the meaning of the sentence

• Features: 
• BoW unigram features
• Bag-of-character 3-grams features
• Topic model based features (the ones used in Athene system)
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Stance Detection: StackLSTM
Hanselowski, A., Avinesh, P. V. S., Schiller, B., Caspelherr, F., Chaudhuri, D., Meyer, C. M., & Gurevych, I. 
(2018). A Retrospective Analysis of the Fake News Challenge Stance-Detection Task. In COLING 2018.

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In 2014 
conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).



Stance Detection: L3S (Learning in 3 Steps)

• Observation: tree-like hierarchy of the 4 classes 
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• 3-stage pipeline

Under review…



Stance Detection: L3S (Learning in 3 Steps)

• Stage 1: Relevance classification
• SVN classifier with class-wise penalty

• Lexical features:  
• n-grams match chargrams match, binary co-occurrence, lemma overlap, cosine similarity, 

word2vec similarity, keyword overlap, proper noun overlap 
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• Stage 3: Agree/Disagree classification
• SVN classifier with class-wise penalty 

• Sentiment and Linguistic Features: 
• Sentiment: using NLTK on first 10 sentences (same as stage 2)

• Linguistic: LIWC features (http://liwc.wpengine.com/) + refuting features (of FNC-I baseline)
16 LIWC features: analytical thinking, clout, authentic, emotional tone, conjugation, negation, comparison words, affective 
processes, positive emotions, negative emotions, anxiety, anger, sadness, differentiation, affiliation, achieve

• Stage 2: Neutral/Stance classification 
• Simple CNN model with embedded word vectors and sentiment features

• Sentiment features:
• Using NLTK (https://www.nltk.org/) on first 10 sentences  (output: array of 4 sentiment scores: 

positive, negative, neutral, compound) 

http://liwc.wpengine.com/
https://www.nltk.org/


Stance Detection: Evaluation
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Stance Detection: Evaluation Measures 

• FNC-I evaluation measure: 
• weighted two-level scoring method

• Rational: 
• The related/unrelated classification task 

is expected to be much easier and is less 
relevant for detecting fake news
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Stance Detection: Evaluation Measures
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• Problem:
• FNC-I evaluation measure does not consider the highly unbalanced class distribution 

of neutral (discuss), agree and disagree!

• Not difficult to separate related from unrelated (the best systems achieves 0.99)

• A classifier that always predicts neutral for the related documents achieves 
score = 0.83 (same as the top ranked system!)

• Important to perform well on the important agree and disagree classes!

• Better measures:
• Class-wise F1 score (harmonic mean of precision and recall for each class)

• Macro-averaged F1 score 

63% 27% 10%



Stance Detection: Evaluation Results
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Stance Detection: Evaluation Results
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• L3S system: Class-wise performance of the different stages



Stance Detection: Evaluation Results

Pavlos Fafalios, Stance Classification for Fact Checking, Web Science 2019 35

• L3S system: confusion matrix



Stance Detection: Related Problems

• Stance detection of claim-relevant articles

• Stance detection of ideological debates

• Stance detection of context-dependent claims

• Stance detection of social media posts
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Stance detection of claim-relevant articles

• Given a fact-checking article (with schema.org structured markup):
1. find claim-relevant documents

2. determine the stance of a claim-relevant document towards the corresponding claim 
(contradicting / supporting the claim)

• Finding relevant documents:
• Candidate generation through

• navigation (by exploiting outgoing links and source articles cited in the fact-checking article) 

• google search (by running queries using the title of the fact-checking article and text of the 
claim, as well as entity annotations and click graph queries)

• Relevance classification: 
• Classifier: Gradient boosting

• Features: content similarity, entity similarity, publication order
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Wang, X., Yu, C., Baumgartner, S., & Korn, F. (2018, April). Relevant document discovery for fact-checking 
articles. In Companion of the The Web Conference 2018 (pp. 525-533).



Stance detection of claim-relevant articles

• Stance classification of relevant documents:
• Binary classification: contradicting / supporting the claim
• Classifier: Gradient boosting 
• Features: n-grams by exploiting a pre-built vocabulary for contradiction and key text 

(title, headline, important sentences)

• Findings:
• Relevance classification: 81% precision, 83% recall
• Stance classification: 96% precision, 86.5% recall

• Limitations:
• Discuss (neutral) is not considered in stance classification
• Independent evaluation of relevance and stance classification

• However: in a real scenario, errors in relevance classification can affect the performance of stance 
classification

• Datasets and code are not provided
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Wang, X., Yu, C., Baumgartner, S., & Korn, F. (2018, April). Relevant document discovery for fact-checking 
articles. In Companion of the The Web Conference 2018 (pp. 525-533).



Stance detection of ideological debates

• Given a two-sided debate subject and an answer, determine the stance of 
the author towards the subject
• Debate subject: “Should abortion be banned?”

• Answer: “Women who receive abortions are less likely to suffer mental health 
problems than women denied abortions”

• Author stance: Against

• Types of classification models:
• Independent: assign a stance label to a post independently of the other posts

• Classifiers: NB, SVM

• Sequence: consider the linear structure of posts
• Classifiers: First order hidden Markov model (HMM), linear chain conditional random fields (CRF)

• Fine grained: jointly determine the stance of a debate post and the stance of its 
sentences
• Classifiers: NB, HM
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Hasan, K. S., & Ng, V. (2013). Stance classification of ideological debates: Data, models, features, and 
constraints. In Sixth International Joint Conference on Natural Language Processing (pp. 1348-1356).



Stance detection of ideological debates

• Features:
• N-grams (unigrams and bigrams)
• Document statistics (post length, words per sentence, words with >6 letters, …) 
• Punctuations (repeated punctuations symbols) 
• Syntactic dependencies (extracting pairs of arguments using a dependency parser)
• Frame-semantic features (using FrameNet)

• Enforcing author constrains: 
• posts written by the same author for the same topic should have the same stance 

Findings:
• Independent models: no clear winner between NB and SVM
• Sequence models are better than their non-sequence counterparts
• Fine-grained models seem to perform better than coarse-grained models
• Fine-grained HMM and CRF achieve the best results
• Frame-semantic features are useful 
• Author constrains improves the performance of stance classification 
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Hasan, K. S., & Ng, V. (2013). Stance classification of ideological debates: Data, models, features, and 
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Stance detection of context-dependent claims

• Given a controversial statement (topic) and an argument (claim), determine 
the stance of the argument towards the statement (Pro | Con)
• Statement/Topic: “Advertising is harmful.”

• Argument/Claim: “Marketing promotes consumerism and waste.”

• Stance of claim towards the topic: Pro

• Semantic model:
• Extract the target (e.g., “advertising”) and sentiment (1 or -1) of both claim and topic*

• Detect the contrast relation between the target topic and target claim (1 or -1)

• stance(claim, topic) = claim sentiment  x  contrast relation  x  topic sentiment

-1   x   1   x   -1    =    1  (Pro)

* Topic target and sentiment are considered input
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Bar-Haim, R., Bhattacharya, I., Dinuzzo, F., Saha, A., & Slonim, N. (2017, April). Stance classification of context-dependent 
claims. In 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1 (pp. 251-261).



Stance detection of context-dependent claims

• Claim target identification:
• Noun phrases in the claim are the candidates
• Classifier: L2-regularized logistic regression
• Features: syntactic and positional (dependency relation), Wikipedia (whether the target is a Wikipedia 

title), sentiment (dependency relation to any sentiment phrase in the claim), topic relatedness (semantic 
similarity between the claim and topic target)

• Claim sentiment classification
• Lexicon-based sentiment analysis 
• Steps: i) sentiment matching (find positive and negative terms), ii) shifters application 

(reverse the polarity of sentiment words), iii) weighting and scoring (considering the 
distance from the claim target)

• Contrast classification algorithm
• Classifier: random forest
• Features: contrast scores obtained through relatedness measures

Findings:
• Accuracy: from 0.63 (considering 100% coverage) to 0.85 (10% coverage)
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Stance detection of social media posts

• Given a controversial topic and a post, determine the stance of the post 
towards the topic (Pro / Against / NONE)
• Topic: Abortion

• Post: “We remind ourselves that love means to be willing to give until it hurts”

• Stance: Against

• Target-specific Attention Neural Network (TAN)
• RNN with bi-directional LSTM for feature extractor from text

• Learn target-augmented embeddings 

• Extract target-specific attention signal

Findings:
• Overall performance in English dataset: 69%

• Overall performance in Chinese dataset: 73%
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Du, J., Xu, R., He, Y., & Gui, L. (2017, August). Stance classification with target-specific neural attention networks. International 
Joint Conferences on Artificial Intelligence.



Conclusion
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Concluding remarks

• Fake News
• Increasingly prevalent nowadays

• Difficult to detect

• High impact

• Fact-checking 
• Checking the veracity of a claim

• Impactful 

• Challenging: laborious, demanding, time-consuming, costly 

• Towards facilitating fact-checking: 
• Detecting the stance of a document towards a claim
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Concluding remarks

• Stance detection: 
• A supervised (multi-class) classification problem [unrelated, discuss, agree, disagree]

• Important classes (for fake news): agree / disagree

• Highly unbalanced class distribution 

• Stance detection approaches:
• Classifiers: gradient boosting, MLP, CNN, SVM with class-wise penalty

• Features: lexical, sentiment, linguistic, topic model-based

• Performance: good overall, poor on the important classes (agree / disagree)
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Need for models that can better understand the language 
used to express agreement and disagreement!



Thank You! 

Questions?
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